sábado, 21 de febrero de 2009

Sistema de encendido Convencional

Encendido convencional (por ruptor)


Este sistema es el mas sencillo de los sistemas de encendido por bobina, en el, se cumplen todas las funciones que se le piden a estos dispositivos. Esta compuesto por los siguientes elementos que se van a repetir parte de ellos en los siguientes sistemas de encendido mas evolucionados que estudiaremos mas adelante.

- Bobina de encendido (también llamado transformador): su función es acumular la energía eléctrica de encendido que después se transmite en forma de impulso de alta tensión a través del distribuidor a las bujías.- Resistencia previa: se utiliza en algunos sistemas de encendido (no siempre). Se pone en cortocircuito en el momento de arranque para aumentar la tensión de arranque.


- Ruptor (también llamado platinos): cierra y abre el circuito primario de la bobina de encendido, que acumula energía eléctrica con los contactos del ruptor cerrados que se transforma en impulso de alta tensión cada vez que se abren los contactos.- Condensador: proporciona una interrupción exacta de la corriente primaria de la bobina y ademas minimiza el salto de chispa entre los contactos del ruptor que lo inutilizarían en poco tiempo.- Distribuidor de encendido (también llamado delco): distribuye la alta tensión de encendido a las bujías en un orden predeterminado.


- Variador de avance centrifugo: regula automáticamente el momento de encendido en función de las revoluciones del motor.


- Variador de avance de vació: regula automáticamente el momento de encendido en función de la carga del motor.- Bujías: contiene los electrodos que es donde salta la chispa cuando recibe la alta tensión, ademas la bujía sirve para hermetizar la cámara de combustión con el exterior.

Funcionamiento:


Una vez que giramos la llave de contacto a posición de contacto el circuito primario es alimentado por la tensión de batería, el circuito primario esta formado por el arrollamiento primario de la bobina de encendido y los contactos del ruptor que cierran el circuito a masa. Con los contactos del ruptor cerrados la corriente eléctrica fluye a masa a través del arrollamiento primario de la bobina. De esta forma se crea en la bobina un campo magnético en el que se acumula la energía de encendido. Cuando se abren los contactos del ruptor la corriente de carga se deriva hacia el condensador que esta conectado en paralelo con los contactos del ruptor. El condensador se cargara absorbiendo una parte de la corriente eléctrica hasta que los contactos del ruptor estén lo suficientemente separados evitando que salte un arco eléctrico que haría perder parte de la tensión que se acumulaba en el arrollamiento primario de la bobina. Es gracias a este modo de funcionar, perfeccionado por el montaje del condensador, que la tensión generada en el circuito primario de un sistema de encendido puede alcanzar momentáneamente algunos centenares de voltios.




Debido a que la relación entre el numero de espiras del bobinado primario y secundario es de 100/1 aproximadamente se obtienen tensiones entre los electrodos de las bujías entre 10 y 15000 Voltios. Una vez que tenemos la alta tensión en el secundario de la bobina esta es enviada al distribuidor a través del cable de alta tensión que une la bobina y el distribuidor. Una vez que tenemos la alta tensión en el distribuidor pasa al rotor que gira en su interior y que distribuye la alta tensión a cada una de las bujías










El distribuidor : Es el elemento mas complejo y que mas funciones cumple dentro de un sistema de encendido. El distribuidor reparte el impulso de alta tensión de encendido entre las diferentes bujías, siguiendo un orden determinado (orden de encendido) y en el instante preciso.Funciones:- Abrir y cerrar a través del ruptor el circuito que alimenta el arrollaminto primario de la bobina.- Distribuir la alta tensión que se genera en el arrollamiento secundario de la bobina a cada una de las bujías a través del rotor y la tapa del distribuidor.- Avanzar o retrasar el punto de encendido en función del nº de revoluciones y de la carga del motor, esto se consigue con el sistema de avance centrifugo y el sistema de avance por vacío respectivamente.
El movimiento de rotación del eje del distribuidor le es transmitido a través del árbol de levas del motor. El distribuidor lleva un acoplamiento al árbol de levas que impide en el mayor de los casos el erróneo posicionamiento.El distribuidor tiene en su parte superior una tapa de material aislante en la que están labrados un borne central y tantos laterales como cilindros tenga el motor. Sobre el eje que mueve la leva del ruptor se monta el rotor o dedo distribuidor, fabricado en material aislante similar al de la tapa. En la parte superior del rotor se dispone una lamina metálica contra la que se aplica el carboncillo empujado por un muelle, ambos alojados en la cara interna del borne central de la tapa. La distancia entre el borde de la lamina del rotor y los contactos laterales es de 0,25 a 0,50 mm. Tanto el rotor como la tapa del distribuidor, solo admiten una posición de montaje, para que exista en todo momento un perfecto sincronismo entre la posición en su giro del rotor y la leva.Con excepción del ruptor de encendido, todas las piezas del distribuidor están prácticamente exentas de mantenimiento.








Sistemas de encendido con doble ruptor y doble encendido


Teniendo en cuenta que a medida que aumenta el numero de cilindros en un motor (4,6,8 ..... cilindros) el ángulo disponible de encendido se hace menor (ángulo = 360/nº cilindros) por lo tanto, y sobre todo a altas revoluciones del motor puede ser que el sistema de encendido no genere tensión suficiente para hacer saltar la chispa en las bujías. Para minimizar este inconveniente se recurre a fabricar distribuidores con doble ruptor como el representado en la figura, que como puede observarse se trata de un distribuidor para un motor de 6 cilindros. Al llevar dos juegos de contactos que se abren alternativamente, el tiempo de que disponen para realizar la apertura es doble, por cuya razón la leva es de solo tres lóbulos o excentricidades. Ademas estos distribuidores deben tener en su cabeza dos "rotores" (en vez de uno como hemos visto hasta ahora) que distribuyan la alta tensión generada por sendas bobinas de encendido.
Circuito con doble ruptor En los motores de 6, 8 y 12 cilindros, con el fin de obtener un mayor ángulo de cierre del ruptor o lo que es lo mismo para que la bobina tenga tiempo suficiente para crear campo magnético, se disponen en el distribuidor dos ruptores accionados independientemente (figura inferior) cada uno de ellos por una leva (2) y (3) con la mitad de lobulos y dos bobinas de encendido (4) y (5) formando circuitos separados; de este modo cada ruptor dispone de un tiempo doble para abrir y cerrar los contactos. Los ruptores van montados con su apertura y cierre sincronizados en el distribuidor, el cual lleva un doble contacto móvil (6) Y (7), tomando corriente de cada una de las salidas de alta de las bobinas, alimentando cada una de ellas a la mitad de los cilindros en forma alternativa






Encendido convencional con ayuda electrónica


El sistema de encendido convencional tiene unas limitaciones que vienen provocadas por los contactos del ruptor, que solo puede trabajar con corrientes eléctricas de hasta 5 A, en efecto si la intensidad eléctrica que circula por el primario de la bobina es de valor bajo, también resultara de bajo valor la corriente de alta tensión creada en el arrollamiento secundario y de insuficiente la potencia eléctrica para conseguir el salto en el vacío de la chispa entre los electrodos de la bujía. Se necesitan por lo tanto valores elevados de intensidad en el arrollamiento primario de la bobina para obtener buenos resultados en el arrollamiento secundario. Como vemos lo dicho esta en contradicción con las posibilidades verdaderas del ruptor y sus contactos ya que cada vez que el ruptor abre sus contactos salta un arco eléctrico que contribuye a quemarlos, transfiriendo metal de un contacto a otro. En la figura se ve la disgregación de los puntos de contacto del raptor; los iones positivos son extraídos del contacto móvil (positivo) creando huecos y depositando el material al contacto fijo (negativo) formando protuberancias.Con la evolución de la electrónica y sus componentes este problema se soluciono. La utilización del transistor como interruptor, permite manejar corrientes eléctricas mucho mas elevadas que las admitidas por el ruptor, pudiendose utilizar bobinas para corrientes eléctricas en su arrollamiento primario de mas de 10 A. Un transistor de potencia puede tener controlada su corriente de base por el ruptor de modo que la corriente principal que circula hacia la bobina no pase por los contactos de ruptor sino por el transistor (T) como se ve en el esquema inferior. La corriente eléctrica procedente de la batería entra la unidad de control o centralita de encendido, en ella pasa a través del transistor cuya base se polariza negativamente cuando los contactos (R) se cierran guiados por la leva. En este caso el distribuidor es el mismo que el utilizado en el encendido convencional, pero la corriente que circula por los contactos de ruptor ahora es insignificante. Con la suma del diodo zenner (DZ) y el juego de resistencias (R1, R2 y R3) puede controlarse perfectamente la corriente de base y proceder a la protección del transistor (T).Cuando los contactos del ruptor (R) se abren, guiados por el movimiento de la leva, la polarización negativa de la base del transistor desaparece y entonces el transistor queda bloqueado cortando la corriente eléctrica que pasa por la bobina. El corte de corriente en el arrollamiento primario de la bobina es mucho mas rápido que en los encendido convencionales de modo que la inducción se produce en unas condiciones muy superiores de efectividad.





jueves, 12 de febrero de 2009

MODULADORES


Diseño de moduladores Delta-Sigma en tecnología CMOS-VLSI. Aplicación al desarrollo de circuitos de interfaz para sensores capacitivos

Además del ordenador PC, tanto en los vehículos, como en las viviendas es difícil encontrar equipos o subsistemas eléctrico8165s que no incluyan algún tipo de circuito integrado para su control.
Aspectos como la automatización de viviendas y edificios se empieza a considerar una cuestión clave para la industria informática. Los cuales se basan en buses de campo. Estos precisan de sensores que le informen del estado de la vivienda, industria, vehículo... que se desea controlar, y actuadores que permitan modificar dicho estado.
Sin embargo, los sensores y actuadores son, en general, sistemas analógicos, con salidas difícilmente estandarizables si no se les incluye una electrónica que acondicione la señal, la convierta en digital, y la adapte a dicho estándar.
La respuesta a esta necesidad la han dado los microsistemas, que permiten incluir en una oblea de silicio sensores, actuadores y la electrónica de control necesaria dando lugar a los llamados sensores y actuadores inteligentes.
Sin embargo, la fabricación de estos microsistemas suele precisar de procesos tecnológicos complejos y costosos, que requieren de etapas que normalmente no se realizan en los procesos CMOS estándar. Esto puede implicar la necesidad de realizar el sensor/actuador en una oblea distinta de la del circuito, por problemas de compatibilidad entre procesos.
Esta tesis también se enmarca dentro de este campo, y busca el diseño de un circuito de interfaz para sensores capacitivos micromecanizados en silicio.
Teniendo en cuenta la posible utilización posterior, se ha impuesto que el diseño debe ser compatible con una tecnología CMOS de bajo coste. Esto lleva a realizar el diseño en tecnologías concebidas inicialmente para la implementación de circuitos digitales.
La salida del interfaz debe ser digital, para poder ser conectado fácilmente a un bus digital. Por este motivo, se ha realizado un estudio de las posibles metodologías de conversión.
Por último, se ha buscado un diseño siguiendo una metodología Top-Down, acorde con las utilizadas en las tecnologías digitales. Esto simplifica el proceso de diseño cuando se hacen sistemas mixtos, ya que se pueden realizar los diferentes pasos en paralelo.
A la hora de escribir esta tesis también se ha seguido este esquema, organizando los capítulos en el mismo orden.
Medida de Micro sensores Capacitivos: Describe el problema de la medida, haciendo hincapié en los problemas que se pueden encontrar con un micro sensor capacitivo. También realiza el estudio de un micro sensor concreto, un acelerómetro xyz para el automóvil.
Diseño Funcional: En este capítulo se estudian las posibles opciones para el diseño de la interfaz. Y posteriormente se analiza la estabilidad del sistema sensor-interfaz.
Diseño Estructural: A partir de las decisiones tomadas en el diseño funcional, se baja al nivel de bloques y se estudia que componentes y dispositivos son más adecuados para el diseño a partir de la modelización y simulaciones realizadas.
Diseño Físico: Se explica todo el proceso seguido para el diseño de las máscaras de la interfaz. Para ello se presenta una explicación más detallada de aquellos dispositivos que por sus características son más dependientes de las condiciones de las máscaras.
Test: Este último capítulo presenta la metodología seguida para la caracterización de los circuitos, así como los resultados obtenidos

CAJA PARA COMPONENTES MODULARES ELECTRONICOS.

Resumen: CAJA PARA COMPONENTES MODULADORES ELECTRONICOS, DE CONFIGURACION GENERAL PARALELEPIPEDICA, CUYA PLACA FRONTAL CONSTITUYE UNA TAPA FRONTAL DE LA CAJA Y ESTA ABISAGRADA A LA PLACA INFERIOR, EN TANTO QUE EN LA ARISTA QUE LA UNE A LA PLACA ENVOLVENTE SUPERIOR ESTA DOTADA DE UNOS MEDIOS DE CIERRE.ONSTITUIDOS POR UNA UÑA DE RETENCION TRANSVERSAL, DISPUESTA POR DEBAJO DE UN REBORDE SUPERIOR HORIZONTAL DE LA TAPA FRONTAL, Y POR UNA LENGUETA FLEXIBLE, DETERMINADA POR DOS CORTES PARALELOS, PRACTICADOS EN SENTIDO LONGITUDINAL EN EL BORDE DE LA PLACA SUPERIOR, ESTANDO DOTADA DICHA LENGUETA DE UNA ACANALADURA TRANSVERSAL ADAPTADA PARA RECIBIR LA UÑA DE RETENCION. LAS PLACAS LATERALES ESTAN DOTADAS A TODO LO LARGO DE SUS CANTOS SUPERIOR E INFERIOR DE UNOS ESCALONES ENTRANTES, QUE DETERMINAN UNAS PORCIONES DE BORDE LIGERAMENTE ENTRANTES, ADAPTADAS PARA QUEDAR RETENIDAS POR RESPECTIVOS REBORDES LONGITUDINALES DE QUE ESTAN DOTADAS LAS PLACAS SUPERIOR E INFERIOR.

Aplicaciones
Permite transmitir simultaneamente señales de audio y video procedentes de 2 equipos receptores de satélite (analógicos o digitales) , VCR (video grabador) , DVD , videocámara, cámara …en todos losl TV en la vivienda a través del cable coaxial.El amplificador interior permiteconectar hasta 8 TV (dependiendo del tipo de instalación, pérdidas del cable, splitters ..)


Modulación de Amplitud

Modulación de amplitud (AM es el proceso de cambiar la amplitud de una portadora de frecuencia relativamente alta de acuerdo con la amplitud de la señal modulante (información). Las frecuencias que son lo suficientemente altas para radiarse de manera eficiente por una antena y propagase por el espacio libre se llaman comunmente radiofrecuencias o simplemente RF. Con la modulación de amplitud, la infomación se imprime sobre la portadora en la forma de cambios de amplitud. La modulación de amplitud es una forma de modulación relativamente barata y de baja calidad de modulación que se utiliza en la radiodifusión de señales de audio y video. La banda de radiodifusión comercial AM abarca desde 535 a 1605 kHz. La radiodifusión comercial de tv se divide en tres bandas (dos de VHF y una de UHF). Los canales de la banda 1 entre 2 y 6 (54 a 88 MHz), los canales de banda alta de VHF son entre 7 MHz) y los canales de UHF son entre 14 a 83 (470 a 890 MHZ). La modulación de amplitud también se usa para las comunicaciones de radio móvil de dos sentidos tal como una radio de banda civil (CB) (26.965 a 27.405 MHz). Un modulador AM es un aparato no lineal con dos señales de entrada de información: una señal portadora de amplitud constante y de frecuencia sencilla, y la señal de información. La información actúa sobre o modula la portadora y puede ser una forma de onda de frecuencia simple o compleja compuesta de muchas frecuencias que fueron originadas de una o más fuentes. Debido a que la información actúa sobre la portadora, se le llama señal modulante. La resultante se llama onda modulada o señal modulada.
Varias formas o variaciones de modulación de amplitud son posibles de generar. Aunque matemáticamente no es la forma más sencilla, la portadora de AM de doble banda lateral (AM DSBFC) se discutirá primero, puesto que probablemente sea la forma más utilizada de la modulación de amplitud. AM DSBFC se le llama algunas veces como AM convencional. La onda modulada de salida contiene todas las frecuencias que componen la señal AM y se utilizan para llevar la información a través del sistema. Por lo tanto, a la forma de la onda modulada se le llama la envolvente. Sin señal modulante, la onda de salida simplemente es la señal portadora amplificada. Cuando se aplica una señal modulante, la amplitud de la onda de salida varía de acuerdo a la señal modulante. Observe que la forma de la envolvente de AM es idéntica a la forma de la señal modulante. Además el tiempo de un ciclo de la envolvente es el mismo que el periodo de la señal modulante. Consecuentemente, la relación de repetición de la envolvente es igual a la frecuencia de la señal modulante. Espectro de frecuencia de AM y ancho de banda Como se estableció anteriormente, un modulador AM en un dispositivo no lineal, Por lo lo tanto, ocurre una mezcla no lineal y la envolvente de salida es una onda compleja compuesta de un voltaje de cd, la frecuencia portadora y las frecuencia de suma y diferencia (es decir, los productos cruzados). La suma y diferencia de frecuencias son desplazadas de la frecuencia portadora por una cantidad igual a la frecuencia de la señal modulante. Por lo tanto, una envolvente de AM contiene componentes en frecuencia espaciados por fm Hz en cualquiera de los lados de la portadora. Sin embargo, debe observarse que la onda modulada no contiene un componente de frecuencia que sea igual a la frecuencia de la señal modulante. El efecto de la modulación es trasladar la señal de modulante en el dominio de la frecuencia para reflejarse simétricamente alrededor de la frecuencia del conducto.
Recepción de AM
La recepción de AM es el proceso inverso de la transmisión de AM. Un receptor de AM convencional, simplemente convierte una onda de amplitud modulada nuevamente a la fuente original de información (o sea, demodular la onda AM). Cuando se demodula una onda AM, la portadora y la porción de la envolvente que lleva la información (o sea, las bandas laterales) se convierten (se "bajan ") o se trasladan del espectro de radio frecuencia a la fuente original de información. El propósito de este capitulo es describir el proceso de demodulación de AM y mostrar varias configuraciones del receptor para poder realizar este proceso. Un receptor debe ser capaz de recibir, amplificar, y demodular una señal de RF. Un receptor también debe ser capaz de limitar las bandas del espectro Total de radio frecuencias a un banda específica de frecuencias. En muchas aplicaciones el receptor debe de ser capaz de cambiar el rango (banda) de frecuencia que es capaz de recibir. A este proceso se le llama sintonizar el receptor. Una vez que una señal de RF se recibe, se amplifica, y se limitan las bandas, deberá convertirse a la fuente original de información. A este proceso se le llama demodulación. Una vez demodulada, la información podría requerir de mayor limitación de las bandas y una amplificación, antes de considerarse lista para usar. Para entender completamente el proceso de demodulación, primero es necesario tener una comprensión básica de la terminología utilizada para describir las características de los receptores y de los circuitos del receptor. La figura siguiente muestra un diagrama a bloques simplificado de un típico receptor de AM. La sección de RF es la primera etapa y, por lo tanto, frecuentemente se llama la parte frontal. Las funciones principales de la sección de RF son: detectar, limitar las bandas y amplificar las señales RF recibidas . En esencia, la sección de RF establece el umbral del receptor (o sea, el nivel mínimo para la señal de RF que el receptor puede detectar y demodular a una señal de información útil).
La sección de RF abarca uno o más de los siguientes circuitos: antena, red de acoplamiento de la antena , filtro ( pre-selector ), y uno o más amplificadores de RF. La sección de mezclador / convertidor reduce las frecuencias de RF recibidas a frecuencias intermedias (IF). La sección de IF generalmente incluye varios amplificadores en cascada y los filtros pasa-bandas. Las funciones principales de la sección de IF son la amplificación y selectividad. El detector de AM demodula la onda de AM y recupera la información de la fuente original. La sección de audio simplemente amplifica la información recuperada a un nivel utilizable


RECEPTOR SUPERHETERODINO

Detector de Picos La función de un detector de AM es demodular la señal de AM, recuperar y reproducir la información de la fuente original. Y debe tener las mismas características relativas de amplitud. Detector de Picos La siguiente figura muestra un diagrama esquemático para un demodulador de AM sencillo no coherente, que se llama comúnmente detector de picos.



lunes, 2 de febrero de 2009

Controls of the batery and witness panel





FIVE ITEMS TO CHEK THE BATTERY

1- circuit voltage exceeding 12.35 volts
2- With the engine stopped, turn on lights, fans, thermal lunette (causing a consumption of 10 to 20 amps), the battery voltage to be maintained above 10.5 volts after a minute of operation

3- Cutting the current consumption the battery voltage has to rise to 11.95 in less than a minute.
4- Activate the starter motor, the voltage does not drop below 9.50 voltios.Temperatura normal.whit low temperatures supports up to 8.50 volts.
5- With the engine at a speed of 3000 rpm, you must provide a load of approximately 10 amperes, the voltage should be stabilized between 13.80 and 14.40 voltios.A as the battery is charging, the flow should stabilize over 1 ampbove 10.5 volts after a minute of operation.


TESTIGOS DEL PANEL







SIMBOLOGIA ELCTRONICA